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A METHOD FOR THE DESIGN OF SWEPTBACK WINGS WARPED TO PRODUCE SPECIFIED
FLIGHT CHARACTERISTICS AT SUPERSONIC SPEEDS 1

By WARREN A. Tucmm

SUMMARY

One oi the problems connected& the mveptbackwing is -the
di@ulty of wntrolling the location of the C* of pre8sure and
hence the pitchiq moment. A methodis prewntsd for de@n-
ing a wing to be m?f-timming at a given set ofj?ighl conditimw.
Concurrently, the spanwise distribution of load on tlu wing is
made to be approximately elliptical, in an e$ort to maintain low
w“ng drag.

Thesejiight charactsridcs are achiewd by warping the wing
out OJa plane. The required warp is o?etmminedby the I-XZJUM
of the mej%ients of a four-term sti describi~ the pressure
distribution; these values in turn are det.mnind jrom four con-
ditions on the lift, @thing moment, and 8panun”seload dis-
tribution.

The methodis directly applicable to severaLwing plun jorma,
including the triangle and the moeptbackplan form un”thjinite
tips, under the rti”ction h-t the leading edge must be &ub80niz
and the trailing edge must be mpersonic. The application to
any specijZcproblem is ti”mp@d to a routine computational
procedure by the present&on of certain basi.edata in talndur
form. A discussion is gitwnoj 8omepoiru%to be eontidered in
the application oj the method to a practieul we, and several
representative tzamples are worked out. The resulting wings
are shown to be ones which mightpracticably be built.

INTRODUCTION

The evolution of the sweptback wing for efficient flight at
supersonic speeds has reached the point where the stability
and control problems me being investigated. This situation
implies that not only the lift and drag of the wing but also
the pitching moment must be considered in relation to the
airplane as rLwhole.

In ordor to be truly efficient at the design lMach number,
the wing should produce the design lift coefhcient without
creating about the airplane center of gravity a pitch@
moment that would require a large deflection of the t - “ g
device (with a correspondingly large drag). In addition, it
is generally desirable thaLthe spanwise distribution of lift be
as newly elliptical as possible and that any adverse pressure
gmdients on the wing be small so as to retard separation of
the flow. These two conditions are not sufficient.to guaran-
tee that the wing drag will be a minimum because at super-
sonic speeds the drag due to lift is also dependent on the
chordwise loading; they are, however, conducive to low wing
drflg.

The use of wings warped to produce a constant pressure
over the surface has been proposed to eliminata the large
adverse pressure gradients encountered with the flat wing.
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For a given plan form, however, a uniform pressure distribu-
tion allows no control over the pitching moment. The wing
warp necwwry to produce certain other pressure distribu-
tions has been derived (ref. 1), but these distributions do not
lend themselves readily to the contiol of pitching moment;
in fact, the conical nature of the pressure distributions fiws
the center of pressure at the center of area for triangular
wings.

In the present report, data are presented from which the
wing warp necessary to produce a certain type of pressure
distribution may be determined. A development is then
given in which certain constants appear@ in the expression
for the pressure distribution. are determined by conditions
on the lift, pitching moment, and spanwise load distribution.
In this manner a method is derived for designing a wing of
given plan form, operating at a given supersonic Mach num-
ber, to have a specified lift coeilicient, a specified center of
pressure, and a nearly elliptical spamvise load distribution.
Although the pressure gradients are not controlled directly
in the method, the type of pressure distribution used insures
that for most reasonable design conditions the gradients will
not be excessive. There is no reason to believe that a con-
figuration using a self-trimming device designed by this
method w-d necessmily have a lower drag than will a simi-
lar conf@ration using a flat wing and a deflected trimming
device. The possibility does exist, however, and should
probably be investigated.

The method is applicable to a wide class of wing plan forms
show-nin figure 1; the principal requirement is that tbe lead-
ing edge must be subsonic and the trailing edge must be
supersonic. The presentation is made in a form suitable
for engineering usa, and a table and computational form are
provided so that the application of the method is reduced to
routine computation.

ll”’ineAA.
A,\’4a..&

FIGUREI.—Planformsto whiohthemethodis applicable.
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&5)

distance of moment axis behind leading edge of
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ANALYSIS

GENERAL

A convenient method is derived in referemw 2 for iinding
the wing shape corresponding to a given pr~e distrib-
ution. In the present report, the lifting-pressure distribution
over the wing is taken to be of the form

4

P= G’+CJx+c:ly]+c4’$ . (1)

ix
l?rfmnm 2.—Axis system for premurs distribution. k=:; .= III.

8

where the axis system is that shown in figure 2, and G1’, G’,
CS’, and C!,’ are as yet arbitrary constants. Other terms
could have been included in the series but the terms shown
gave acceptable results without requiring undue labor.
For convenience, the coe5ciauta of the seriesmay bo replaced
by others similar in nature suoh that the lifting-pressure
distribution can be expressed by the following equation:

(2)

For purposes of calculation, the wing is assumed to have
no thickness so that the shape dernved is actually tho mom
surface of the wing. Within the assumptions of the linerw-
ized theory, an arbitrary thiclmem distribution, symmetrical
above and below the mean surface, em then be added with
no effect on the lift and pitohing moment.

Suitable integrations of the pressure distribution over
the plan form may be performed to obtain equations for
the lift coefficient, the pitching-moment coefficient, and the
spanwise load distribution. One condition may then be
imposed on the lift, one on the pitching moment, and two
on the spanwim load distribution. This proceduro results
in four linear equations in the four unknowns CJCL, CJCL,
C~CL, and CJCL. The values for these constants may tlmn
be substituted into equation (2), and the shape of the wing
(that is, the warp) necessary to produce this pressure
distribution can be found by the method of reference 2.

The foregoing material has described the method in general
terms. In the following sections more detailed descriptions
are given: First, of the procedure used to find tho wwrp
corresponding to each component of the pressure distribu-
tion; second, of the method used to determine the constants
for the caae of plan forms having pointed tips; and last,
of the corresponding procedure for plan forms hrwing finite
tip chords. Although the determination of the constants
is in prinoiple the same for both types of plan forms, certain
simplifications oconrring for the pointed-tip caae make not
only the actual numerioal work of determining the constants
but also the exposition of the procedure simpler for this owe.
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WARP

The warps or wing shapes necessaq- to produce the several
components of the pressure distribution given in equation
(2) are first found separately az functions of the four constants
cdcLI ~/cLI c8/cLj md CdCL. Later, after nnmericd
values of the constants have been determined by the condi-
tions imposed on the lift, pitching moment, and spanwise
lortd distribution, the separate shapes are superimposed
to form the final warped wing.

The generrd idea in iinding each wing ~mpe is iirst to

()
dotermino the slope of the wing surface ~ ~mOassociated

with the pressure distribution under consideration and then
to integrate this slope in the z-direction I%get the z-ordinate
at any point (the direction of z is taken mutually perpendicu-
lar to z and y, positive upwards). Of the available methods
for iimling the wing slope corresponding to a given pressure
distribution, that presented in reference 2 waz chosen for
the particular problem. The principal advantage of this
method is that it eliminates the need for considering z in
the integrations involved and so simplifies the integrations.

The slope of the wing surface corresponding to each term
of equation (2) is found by application of equations (8) and
(17) of reference 2. The wing shape as a displacement from
tho z =0 plane is then found by integrating the slope in the
z-direction; thus,

‘ dz ~z

S( )

~= —
~ dx ..0 (3)

The following equations result for the wing shapes corre-
sponding to the four components of the pressure:

~-z(l+r) cosh-’ - +

-(l–r) cosh-’ - ] (4a)

& [ 1
‘2(12–m+r+#cosh-’ * +n(l+r)

1
[

nl(l—#)
~=’ 2

_T+#]cosh-,l-l}

(l+r)’+2(1–n~(r+#) coah_, l+n% +
2~nz n(l+r)

(1–r)’–2(l–n~(r–P) ~oah_l l–n%
2-A –n= n(l —r)II

(4b)

(4C)

n’ 1+-n%
~ (l+P)]cosh-l —+n(l+,r)

(I:y [
6–~;+2”4 (r%)–y (?’-P)–

1
$ (1+ Coah-l I—nzrn(l —r)1}

(4d)

The significance of the quantities r and n is most clearly
seen by reference to figure 3. Calculations have been made
of the quantities & R, &, and IL, which are in a certain
sense the conical parts of the wing shapes, and the rcmdts
are presented in figure 4 and table I. The figure is intended
to be merely illustrative; the results in the table should be
used for actual calculations. A study of the figure provides
a qualitative idea of the various wing shapes. One iateresb
ing fact to notice is that no infinities occur at the center line
(r=O) for the cases in which the prcsmre is proportional to
x and to ~. (Compare with the shapes derived in ref. 1.)

‘Y

,Witkg Ietxfmg edgs

\
—Y
—A -.JJ’

r Y~ ~

FIGURE 3.—Definitione of r and n: r=~=~; nm~=pm.

RVALUATTON OF CON8TANTS FOR POINTED.~ WINGS (x-o)

The prwaure distribution given by equation (2) is inte-
grated over the plan form to obtain an expression for the lift
of the wing. If the limits shown in figure 5 are used, the
following equation expresses the value of the lift:

Lift

SS

e,.@

‘=2(7L >y ~lm‘:dx
q L

(5)
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If the indicated operations are carried out and th8 lift
coefficient is formed, the following equation results:

(6)

The pitching moment about ~ axis a distance a behind
the wing apex may also be found by the following equation:

M
SS

tu
C,*

5=–2(7= Sdy (x–x,) :-d; (7)
o utm L
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TABLE J.—VALUES OF R,, RJ,RGR,

n

r 0.1 0.2 0.3

R, R; RI & R, Rs RI & R, Iii Rl Rd

o -aUsa
.02 -;:m

W?& –-
–.cts17

-o.asi’o -
0.-U19

o.02Ml
–o.4275 –.w

-a W$3
a law .0244 4–GIO

Q.0240

.04 -.W31 –.am .0579 .0233 –.2a23
–.4mo

–.U360 .0550
a% .ma

.06 –.2s317 –.Om .0274 .a217
.02m –.m

–.me
–.W2’5

–.U%8
.0n5

.E254
.K418

.c@ –.2403 -.0784
.0209

.Om
–.m

–.2622 –.w
–.0915 .0230

.0047
.0197

.10 –.21m –.0707 –:E
.01ss

.0109
–.m

–.2171 –.US18
–.00m .0173

–.0104
.r2 -.la –.0749 –.01’33

.0101
.0137

–.‘22s5
–.1824

–.C@s4
–.0769 –.0219

–:E .014s

.14 –.16s1 -.m –.l-cm
.0127

.0M3
–.1W4

–.16$3
–.0935

–.Ons
–.CQ44

–.m
.0U6

.16 -.1372 –.0704 -.aw
.m

.mo
–.1729

–.14&i
–.a344

–.0755
–.0334

–.0379
,.ma

,18 -.1191 –.m –.oils
–.1619

.0245 –.1248 –.m
–.mm

–.MM
–.04M .cOM

.m -.Km –.0054
:%%

–.c!454 .m14
–.Km

–.1091
–.0790

–.0704 –.0476
–.045s .m24

.cm4’ –.1175
.24 -.om –.0597 –.mm –.Owo –.a!05 –.W-48

–.07w
–.&w3

–.&ml –.m

.!n -.0425 –.m –.05s3 –.Olm
–.am –.W239

–.O&a
–.ma

–.0567 –.0534 –.0111
–.M&3 –.m

.32 –.am –.0474 –.0633 –.0149
–.wm

–.am
–.0e52

–.0523
–.06?Jl

-.05M –.olh9 –.0476
–.0123

.36 –.0107 –.0407 –.0516 –.01s9 –.022s
–.05s7

–.0453
–.05s2

.40
–.0539 –.cram –.0310

-.0172

-.m –.0340 –.WA –.02m –.W5
–.05m

–.03s7
–.0%8

–.0w7
–.0213

.U .Q3m –.am –.o-442 –.0243
–.0233

.m39
–.Olea –.owl

–.0317 –.0464
–.m –.am

.48 .K05 –.01%3 –.am
–.+X54

–.02M
–.m42

.0140
–.0379

–.0240
–.04fQ

–.cm3
–.Om

.62 .mw –.Orm –.ml
–.m

–.02M
.m67

.Cr23u
–.m

–.0181
–.0442

–.0354
–.ml

.J53 .CQ70 -.0a59 –.02m
–.Om .Olm

–.cu7 .03m –.0100
–.0228

–.0m3
–cum –.022.4

.eu .0445 .llm –.am
–.026n .0242

–.m%
–.0160

.03%$ –:~
–ml

–.0224
–.0276

,0515 .W39
–.ml .C!311 –.m –.0255 –.0759

:;
–.0116 –.0192 .04.!s

.Om .0104
–.0139

–.m –.0142
–.Om .ma

.am .Olm –.m –.Olfa
–.0014 –.0W3 –.am

.76 .06M .am
.0i3a

–.Um2 .Oml
.Cm4

.Olw
–.cm!.4 –.0172

.&l .062.5 :%%
.m@l

.Ol!n –.Mm
–.am .O-m

.M73
.Olw

.0247
–.ml –.0114

.a .Om .0w3
.0105

.0155
–.mz9

.0313
.Om

.0577
.0194

.Ctm7 .0132
.m74 –.lxU7

.84 .Oml .0325
–.m

.0180 .Q340
.aw

.097’8
.0216 .0102

.0157 .aQo
–.mm

.f!-o .0623 :% .Om .0w7
.0510

.a576
.0234

:%!!3
.0127

.0179
.m

.83 .Qm2 .0m2
.WK4

.m
.W

.W71
.0249

.0311
.Om

.Omo
.Ciu4

.Ol .0619 N_& .ans
.5)78

.0115
.a505

.am
.0m2

.cw9
.Om

.&416
.UMs

.91 .m .0245
.0101

.0126
.04%

.a557
.02R

.Wf3
.0187

.Oza
.Oass

.S-a .Ms9 .c@m .OM1
.0112

.0W3
.0493

.0$Y3
.0275

.Cu23
.0194

.lwia
.Ixra4

.CQ ,M91 .owl .0254
.Ol!a

.0144
.045%

.0s42
.02n

.0223
.Olw

.cm2
.Olm

.94 .OW .03w .02M
.Olal

.0152
.0479

.0ss2
.0277

.0321
.Cr203

.0234
.0113

,65 .amo .Ow .Om
.0139

.0167
.Om

.O-521
.U4n

.0319
.mm .Olm

.% .Wi3 .0351 .02M
.0144

.0161
.04J31

.a507
.0275

.0313 :E
.Ol!m

.!37 .0541 .0343 .0251
.0146

.0162 .0-494
.0270

.02n7
x%

.&m
.0130

.s3 .0524 .0331 .0241
.0148

.Olfm
:!#

.0476
.0284

.0m4
.cGm

.0223 .0146
.0132

.am .0316 .0231 .0152
.0254 .0197 .0133

1:%
.0454

.04M
.ml

.am
.0211

.0207
.0140

.0123 .0421
.aMo

.0254
.olM

.Olm
.0124

.0121 - :%! .0214 .Olm .Om

TABLE I.—VALUES OF R,,R% R% R_ Continued

n

,;7 04 ‘,,,
r 04.,+ 0.6

:.
)

RI R: & R:,’ R, Rs & R( R, Rs Ra R4
. /

o -0.1013
.02 -:X11

0.0223 -o.mm m
–.1010 a %9 .0223

am9
-c&

-a lm =
–.1095 a mn 4:;ss

a0210
.0212 –.ma

.04 -.SW –.1003 .0m7 .0m7 –.3W24
aosw

–.lW .0481
.Uiw

–.3165 –.@wl
.0197

.0167
–.w –.1178 .W .0187

-. –.3282
.&!

–.1076
-.27W

.0177
–.Oan –:%!!

.0176
.0162

-.34U6
–.2824

–.1167
–.mm –.m32

.0147 .0160
.0152 -.Ma –.1153

,10 .=?2357 ~Q&3 –.0153 .0135 –.2471 –.1045 –.0184
-.ml .0142

.12 –.2070
.0124

–.02n .Olm
–.2b97 –.1E?5 –.0213 .0114

–.2134 –.1026 ~mm .WQJ ?.2310 –.1116
,14 -.1823 –.m –.0351 .M75 –.1943 –.me+! –.am

-.0?30

.16 -.M&Q –.aw7 -.0431
.0m4

.cKM4
–.am -.IUJ6 –.0421 %&

–.1740 –.am
.18 –.1433 –.O.m

–.04.54
–.0487

.U?a2
.0012

–.18’Y3
–.1652 –.0053

–.Ion –.0492

.m -.1270 –.aw
–.0516

–.0529 -.0019
.ml –.1076

-.137N
–.1046

–.0929
–.05#

–.O&w
-:E

.24 -.mm –.07s3 -.0s%5
-.0331

–.atso –.lm –.C4ii’2–.0616
-.1614 –.1019 –.M31 –.06i2

–.0769 –.0727 –.mlo
–.0393

–.0130
–.KzM

–.M!al –.m
–.cwl –.0050

–.w
–.0164

:% –.w –.mm –.m13 –.Ow
–.0149 –.IM3

–.mm
–.ctw

–.0743
–.m

–.cwo –.Om –.aso7
–.0161

.2a -.04a9 -.Ow’3 –.0587 –.0237 –.W18
–.am

–.M74
–.owl

.40 –.Ozc3 –.O.m
–.O&72 –.022 –.cms –.ml

–.0213

–.am –.0260 -.am –.0603 –.0m3
–.01w2 –.02E8

.U -.0139 –.C451 –.05m
–.0270

–.02%4 –.CQ50
–.0491 –.0689

–.0529
–.OMl –.0292

–.O&lo ~.m –.cwa –.cw4
;48 -.mm -0379 –.0476 –.02n –.0123 –.0453

–.Oml
–.a513 –.0315

-.0318

.52 .Cmo7 –.03c4 –.0419 –.ml –.mm
-::m& –.0539

–.am
–.05s4

–.0457 –.a319
–.0333

,50 .0149 –.0234 –.0235 –.az’a4
–.0i63

.C0i6 –.mm
–.049s

–.0395
–.m

.eJ1 .020$ –.om –.0235
–.ma

–.0277
–.m –.am

.0119 –.@z37
–.0437

–.02s0
–.0n4

.@& .Om
–.0207 .cm9 –.@318 –.am –.0318

-.6279 –.0m5 –.0242 . .Olm
,70

–.Olm
.m52 .@mo –.Olm –.Omi

–.0240 –.0234 .m –.0224
.0257 –.Wm

–.am
–.0160

–.02ss

.76 ~.oon -.(#2$
–.o117 .015! –.0139 –.Crm4 –.0242

.M1 <%
-.0135 .0w3 .W27

.0136 .003%
–.m78

–.m .am
–.0159 .Wnl –.ma

.cm4
–.Ora

–.O&w –.0w5 W&
–.01EJ3

.62 .cw?? .Olbs –.0642 .0341 .Cm7
.0010 –.m44 –.o121

.St .0177 :%
–.m .m

:=
–.0015 .0347 .0119 .%!

–.M114 –.cm5

.86 .01Q5
–.Wo

.00L2
.02.59

.CR749
.cms

.0137
.aao –.w

.0431 .m
.W177

.013-5
–.c012

.m
.0242

;a&
.We

.01s3
.Ixi37 –.w

:% .04m .0218
.Wz3

.0164 .m
.Km .0!is5 .W97

.0105
.KK4

.04m .0z3
.0116

.Ow
.0037 .am .0U2

–:cm;

:%
.U273

.lM14 .0228
.012Q

.Olm
.0124 .WK1

.@xm :%
.0117

;:~~
:E

.0131
.W24

.04U8 .02i8 .Oln
.cm’3

.m%2
:&%

.Cm3
.01Z3 .m

.0137
.cm4

,W .04m .0228 .0176
.0270

.Om .,p3a3
.0127

.Om
.WwJ

,9s .am .W27
.0141

.0170
.U276

.Olwl .0318
;= .0131

.0178
.OIM %#

.am .0224
.0142

.0176
.ms

.Ouo .m
.0131 .Om .m

:: .02$7
.0178

.0218
.0143

.0173
.msJ

.0113 .O!m
.0131

.0172
.Olua moo

.6a .W.51 b0210
.0141

.0163
.mm

.Om .m
.:&z .Olm

.0165
.Om

.0137
.mn

cm” .0197 .olh9
.ml

.0100
.0216

.0m8
.Oln .0105 .U)71

i; .am
.0154

.0173
;:jE&

.0130 .mm
.W

.Om
.0114

.0132
.Wm .m

.0371 .:%% .Cm3 .ml .UoM
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TABLE I.—VALUES OF RI,Rz,R~ R_ Concluded
I
I n

I 0.7 I 0.8 I 0.9r

-l— .—— ———
RJ

L
R4 RI R,llhl R,R,

— .

-G’k
–.41N
-.3641
–.3r@5
–.2732
–.244.5
–.ma
-.lea4
–.1812
–.1047
–.13F9
-.lm
–.0m7
–.0707
–.W18
–.044%
–.a374
–.0273
–.Ows
–.Ow
–:W&

.Olca

.014

.01’53

.0107

.0174

.Olm

.Olm

.0181

.01s)

.0179

.0170

.0171

.0160

.01=

.Ol&)

.Olm

.0117

R3 R4 R,
.—-

Ra

-0.1W4
–.lW1
–.1373
–.lEa2
–.1347
–.1330
–J310
–.m
–.l!am
–.Ea3
–.1210
–.lm
–.lm
–.1017
–.6944
-.cma
–.0792
–.0713
–.m
–.0566
–.0470
–.63SJ
–.02s7
–.cram
–.Olm
–.mw
–.mm
–.am
–.W16
.lxm
.W16
aria
.W31
.0m7

:$&
.W48
.W

:%!

-o.14s7
-.lW
–.1476
–.1464
–.1449
–.1432
-.1411
–.KS9
–.1?$5
–.13s9
–.1310
–.12W
–.1184
–.1U4
–.1040
–.0w3
–.a384
–.w
-.0722
–.@Ml
–.W
-.0.4JM
–.0363
–.0270
–.ol@A
–.0163
–.0122
-.Ix04
–.m
–.W44
-.6032
–.mm
–.c013
–.m
.mn
.m
.am
.m17
.0317
.Wlo

a0M4
.0177
.0102
0140
.0116
.0n57
.M60

~;~

-.m74
-.0139
-.OzM
-.0266
-.0w4
-.w
-.0373
-.W-94
-.0406
–.0406
-.0386
-.a373
-.03m
-.Otnl
-.0213
–.0180
-.0169
-.0131
-.0101
-.W76
–.m
-.m49
-.w
-.cv26
-.ctl17
-:~

.W7

.cwl

.aw

o.vim
.0104
.0178
.0167
.0132
.0164
.Cms
.0343
.Wll

–.m
–.0J53
–.0U6
–.0174
–.0227
–.0272
–.0x19
–.m
–.03.!s
–.@m
–.CG57
–.02.43
–.0313
–.Oifm
-–.w414
–.Olw
=.0127
–.w
–.m
–.w
–.IX66
–.m
.@n
.@317
.O?ia
.Ixes

:%
.W49
.W49
.Cm7

a-w
.K7a7

–:E–.0272
–.@
–.04s1
–.0661
–.Osll
–.Wa
–.0717
–.0748
–.07M
–.0740
–.mm
–.M86
–.m
–.0ts7
–.0629
–.O-4&3
–.c@3
–.W
–.0216
—.0137
–.Olm
–.we
–.W62
–.Wis
–.m
.Oxd
.cm4
.Wz2
.MQ9
.m
.Cc40
.a!44
.0343
.0242
.0231

&0192
.Om
.0170
.0149
.Orn
.O@M
.W
.m34
.ml

–.ml
–.0334
–.Oil%
–.01s7
–.ma
–.0%7
–.(m26
–.mm
–.Wb
–.am
–.m
–.C@2
–.a341
–.02m
;.

–.0164
–.o124
–.m
–.W72
–.0340
~.

–.ml
.m
.MOJ
.CH)17

:s
.Wz7
.W21

-_<~
-. 2s36
–.m

––.m
–.2737
–.24M
–.2234
–.alto
–.lW
–.1034
–.1419
–.1218
–.MM
–.Ct5Ql
–.0760
–.@w
–.OsM
-.6434
–.0350
–.6%1
–.0175
-.Olce
-,ca52
–.m
–.m16
–.ml
.0313
can
.am
.ml
.W34
.W37
.m
.0339
.cwa

;%%
.0024

O..m.

.04

.03

.03

.10

.12

.14.

.16

.18

:Z
.28
.32
.30
.40
.44
.4s
.62
..M
.F41
.06
.70
.76
.Erl
.82
.34
.66
.s
.s0
.91
.92
.m
.94
.06
.4’93
.97

:R
L03,

-o.lm
–.Im2
–.r274
–.Ka32
–.lxs
–.M31
–.1211
–.lltm
–.llos
–.1140
–.lm
–.low
–.m
–.W22
-.cml
~.

–.032s
–.0s47
–.0470
–.m
-.ml
–.oa13
–.012JJ
–.W56
–.m
–:g

.W40

.Wa

.W30

.m

.m

.W@3

:%$
.W3
.c&a
.0377
.Om.?

+.&
–.3EM
–.32Z3
–.2s76
–.2bs7
–.2346
–.!2136
–.K&2
–.17s3
–.lm
–.1274
–.1076
–.f#3
–.0762
-.0019
–.m

~cmm
–.0207
–.0226
–.0137
–.We3
–.m
.W6
.W!32
.Im76
.-
.W
.0101
.01U3
.0104
.Oloi
.0104
.Olcm
.mw
.0736
.@sw
.m
.m66

O.–wll
.aw

–:%
–.0316
–.6419
-.w
-.w
–.W43
–.cme
–.0762
-.0734
–.0704
-.07s6
–.0764
–.0729
-.Cea6
–.m
–.0677
-.am
–.043
–.0361
-.0266
–.0187
–.01E8
-.0126
–.0101
–.m
–.W47
:.~

–.M117
–.Wo7
–.ml
.(KQ7
.Mlll
.0016
.0316
.W

0.0%39
.0426
.0119

–.lm’xl
–.0242
–.6369
–.04s1
–.Wu
–.06iQ
–.032s
–.Mm
–.0712
–.0718
–.Oiw
–.owl
–.w
–.0.w3
–.w
–.0’4?2
–.0418
–.0235
–.02w
–.0167
–.m
–.W30
–.w
–.0@17
.mm
.0i7a
.m’io
.0)54
.C031
.m
.0372
.@J76
.m70
.an4

:&%
I

where c is the local chord and c1is the local lift coeilicient.
The integration hsa already been made in finding the lift,
The following equation results:

\

(9)

For purposes of reference, the spanwise load distribution if
elliptical would be given by. the following equation:

(lo)

where A=O for the pointed-tip case. Equations (6), (8), and
(9) are now used to iind valuea for OJG, (?2/0., OJOL,and
O~CL. The following conditions are tit applied to equationFIGURE5.—Limits of integration for pointed-tip wing.

After the pitching-moment coefficient is formed, the following
equation is obtained;,

(9) :

(–)
Col =2* (value for ellipse)

C& ..0

[()]
d~

da .0
=0 (value for ellipse)

(11)

(8) .

where ag@ X= Ofor the pointed-tip case. The-seconditions
are not quite arbitrary but were chosen after trial of a
number of possibilities. The selection of these particuhw
conditions not only made possible a solution for the four
unknowns but also resulted in a single equation for the

The spanwise load
integration: .

distribution is found from the following
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spamvise load distribution which was a fair approximation
to an ellipse. (The degree of the approximation is shown
subsequently.)

The solution for the constants may now be made. Sub-
stitution of equations (11) into equation (9) gives the follow-
ing values for C1/CLand ~/cL~

c, 4k l—k Gj_— —.
G–(l+k)r+l+k CL

c, 4 2 C3.=— .— —
CL (l+k)r l+k CL

These values are substituted into equation (6) and the follow-
ing solution for CJCL i8 got:

C,_6 16
c– –T

The VilUSSof Cl/CL, CJCL, and C~CL are substituhd into
equation (8) and the lefhhand side is set equal to zero to
arrive M the solution for ~/CL. The solutions are collected
in the following equations:

or

C, 8(l+k) 3(4–k) _ l+7k+& 3 xo
G=n [

-——
‘1O(1–IC)5T(1–F) 2 ~ 1

L?, 8(l+k) 7–3k l+7k+W xt
z=— [ 1l–k 10(l–k)– 5m(1–L?)‘%’ (12)

0, 4 2 C3—.— —— —cL (l+k)r l+k CL

c, 4k l—k C%—— —
C–(l+k)r+l+km

2

The two forms for CJCL are given because in some cases the
center of pressure is located more conveniently with respect
to the mean aerodynamic chord Z. The geometrical relation
between a and $ is indicated in figure 5; the analytical
relation is

Z@ 25, 1—=—
G 3 Z ‘ 3(1–k)

(13)

For k=O (triangular wing), equations (12) simplify to the
following equations:

c
$=6–:
L

$=8 (~–~~ ~5 5X 2cr )
or

. (14)

When equations (12) are substituted into equation (9), the
following equation for the spwnvise load distribution is
obtained:

-f&++(+)++!) # (15)

This equation is uniformly valid for all pointed-tip wings,
independent of the lift, center of pressure, Mach number,
and relative sweeps of the leading and trailing edges. The
load distribution given by equation (15) is compared with the
elliptical distribution of equation (10) in figure 6. As a
matter of incidental interest, the spanwise center of load on
one wing panel is located 0.409semispan outboard of the wing
center line for the load represented by equation (15) as
compared with a corresponding value of 0.424 for the
elliptical load.

.8
<’

.6

2“4

.2

01.O .8 .6 .4 .2 0 .2 .4 .6 .8 1.0
c

FIGURE6.+panwise load distribution for pointed-tip wings compared
with elliptical load distribution.

EVALUATION OF.CONSTANTW FOB WINQS WITH FINITETAPER

The problem of wings with finite taper can be approached
in two ways. The more obvious method is to assume that
the pressure distribution defined by equation (2) applies
over the entire wing surface and to calculate the required
warp. (A separate calculation for the warp in the tip region,
which is shown shaded in fig. 2, is required, but this calcula-
tion is not impossible to make.) The disadvantage of this
procedure is that at the tip the required wing slope takes on
very large values (theoreticidly infinite). A more practical
approach, and the one adopted in this report, is to relax the
condition on the pressure in the tip region. For a flat lifting
wing with subsonic leading edges, the average pressure in
the tip region is lmown to be close to zero (refs. 3 and 4).
It is not entirely illogical to suppose that for a slightly warped
wing the pressure in the tip will also be very small. If for
the warped wing the pressure in the tip were taken to be
exactly zero, the equations for the lift, pitching moment, and
so forth would be derived by fret integrating the pressure
distribution defined by equation (2) over the entire wing,
including the tip region, after which the integral of the same
pressure over the tip region would be subtracted. In order
to keep the equations within reasonable limi~, a constant
preeaure was instead subtracted from the tip region. The
value of this pressure was taken to be the value given by
equation (2) at the middle of the tip chord; namely,

(16)

,
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After the forego~g wwmption has been made, the de-
termination of the four constants proceeds very similarly to
that for the pointed-tip wing: The pressure distribution is
integrated to obtain equations for the lift, pitching m-oment,
and spanwise load distribution; two conditions are set on the
spanwise load distribution, and the resulting. two equations
are solved together with the equations for the lift and the
pitdhg moment to give values for the co~tanti ~/cLj
G/cL,Cl/c., and CdC.. The procedure just indicated is
now given.

The lift equation, corresponding to equation (6) for the

I pointed-tip wing, is
z–k ~’(l+k) 2–A(l+k) A :+

I =(1–A) ~+[~)–~q– 2(1–A) 1 L

[ 1[

1+3X A $-I+2A ~ G4_ _–— —
3(1+X) 1~ 6(1+X) L

(17)

where
x2(l–k)

‘=(k+n) (1–M
(18)

In this equation, all the terms containing A arise from
integration of the pressure over the tip region, whereas the
remainder of the terms represent the integration of equation
(2) over the whole ~g area. II x is set equal to zero, the
equation reduces to the form given in equation (6).

The pitching-moment equation, corresponding to equation (8) for the pointed-tip wing, is

{[
3(1+X) ~ g_(l+X+F) g= -7j––––

1[

3(1–IA) (I+k)(l –x)’
-q}5+({-2~- 2

3(1–kk) (l+k)(l - A)_
c, 2(1–k) 2(1–k)

.P
(1–IC)+2(1-X)

]’};-{m+.+m- ,(1-k~
l–k 3k I@ –A) O+k+&X1–N’_

2(1–X)

,-

where
3X2(1–k)

‘=2(k+n)(l-A)

3k2 , X3(2n+k)(l–k)
CE2(k+n) ‘ 2(k+n)’(1–x) }

The remarks following equation (17), with A replaced by B and C and with equation (6)
also apply to equation (19).

Because of the existence of a tip region for the wing of finite taper, the spanwise load
scribed by two equations, one applicable from the center line out to the beginning of the
applicable over the remainder of the span:

(19)

(20)

replaced by equation (S),

distribution must be de-
tip region and the other

X(l–k) -
‘or 0= “s l–(k+n)(l–A)’

( l—k Cz—–(1-l)& ~–-$. U– z* &-3&=x)c.
)[ LI[

(l+k)(l–A)C,
1

~+(l–k) *c. c. u++ ;:/ (210

~(1–k)
‘or l–(k+n)(l–x) = “S 1’

{

(l+n)(l–k)C, (1–k)’–[2–x(l+k)] [X(l+n)–(k+n)] c2 M+n)-(k+n)

$= l–k Z#
——

2(1-k)(l-k) c. [ l-k 1(2+2)} -{(1+:~~-A)%-

(1–k)[2k(l-k)-2(k+ n)+ A(l+k)(k+n)] C, (1–k)–(1–k)(k+n) C, (1–A)(k+n):——
2(1-k)(l-X) c. l—k }

FL+ ~–k ~ “–

(Zlb)
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Tho conditions given in equations (11) are now applied to equation (21a) to obtain the following relations:

(?,_4k(l+A) l–k C,
~– (l+k)r‘(1–h)(l+k) m

c,_4(l–x3 2 c~—— .
a–(l+k)m l+ltc.

(22)

(23)

These values of C1/CLand CJCL am substituted into equation (17) and equation (19). The center of pressure is fixed
at Q by putting Cmequal to zero in equation (19) and the following equationa for CJCL and C~CL are obtained:

c4_ 6(1+X)
[
~_8(l+X)–4X2+(4–2X)(l+X)~

a–(l+3k)–6(l+k)A 3T z’ 1

(1–k)(l+X+X’+V)C,
8(1–X)(l+k) z+{(%-’)%[i+i$33(1i&yq}g

{
2(1‘A) [3(l+k)–(l+k)(l –x)2–(2–A)(l+k)lq :–

‘–~l+k)m

[

(3+k–&Xl+N-(3+5k+ k’)A’+(1 +k+/P)x’
2(1–k)

-(2-~)(l+k)C]}

where A, B, and C are defined in equations (18) and (20).

Equationa (24) and (25) can be solved for CJdL and
OZ/CL,after which CJCL and CJCL can be found from equa-
tiom (22) and (23). This calculation is best done with the
numerical values for X, k, n, and %/c, for the particular wing
under consideration. The procedure is illustrated by an
example in a subsequent section entitled “Numerical Ex-
amplea.” The relation between xJc, and Ffi corresponding
to equation (13) for the pointed-tip wing is

ZJ 2(1+X+X9 P l+A-2N
i= 3(1+x) %+3(l+k)(l–k)

(26)

The sprmwiseload distribution corresponding to equation
(15) for the pointed-tip wing can be obtained by substituting
equations (22) and (23) into equations (21a) and (21b).
The substitution into equation (21b) produces only added
complexity, and the result is not given here~- The sub-
stitution into equation (21a), however, gives the following

simplified equations for 05 us 1—
A(l–k)

(k+n)(l–A):

Unlike the spanwiee load distribution for the pointed-tip
wing, the load distribution for the linite-taper wing cannot
be compared with an elliptical distribution for all wings but
must be compared separately for each example investigated
because of the form of equations (27) and (21b). The
elliptical distribution is still given by equation (10).

(2+

(25)

NUMERICAL COMPUTATIONS

DEVELOPMENT OF FORM FOR COMPUTATION

After numerical values have been found for the constants
Cl/CL, C2/~j CJCL, ~d C~CL, these V&ES are used tith
equations (4), or rather with the numbers in table I com-
puted horn these equations, to End the zdisplacement
corresponding to each component of the pressure distribu-
tion. The four displacements are then added to produce the
final shape of the warped wing. In principle this process is
straightforward so that in practice it may be reduced to
routine computation. A form suitable for such computation
is now developed. The particular form presented is one such
that, at a given spantie station u, the z-ordinate as a
fraction of the local chord c is given as a function of z’/c, the
fractional distance behind the leading edge of the local chord.
As a typical example, the z-ordinate corrwponding to tho
second term of equation (2) is considered. From equation
(4b) the following relation is written:

The following geometrical relations .me easily verified:

:=1–U(H)

mcr l—k
-T=Fx
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so that ... ..

c, (1–k)[l–u(l-x)] z’~ ~=Eg ~
{
y+

U(l-x) 2
l—h (1–k)[l–u(l-k)] }

Now if& is defined as

then
~(l–k)[l–u(l-x)]
A l—x

and it can be shown that

so that
.-

AQx’ O-(1-X)
‘=~+(l–k)[l–u(l –X)]=~&r

(28)

(29)

Thus, at a particular spamvise station u on a given wing,
ZJCis a function only of r (since B ss a function of r is hewn
from table I). From equation (28), x’/c is also a function
of r; thus,

x’&&—.— —
cr

so that zJc can be calculated for various values of x’/c. By
experience, it has been found that the most satisfactqy
way of choosing valuw of r to use in the computations is

to; pl~t, for the particular wing under consideration, x’/c
agaiiist r (for the various value9 of a) from equation (30).
Onlyt%hms of z’/c between O and 1 are of interest. This
I%ictdetermines, for each u, the range of r to be used, nnd
from the values of r used sz arguments in table I those
which give a satisfactory distribution of points along the
chord are chosen. Relations similar to equation (29) for
the other z-components can be derived; these relntions nre

(31)

The amount of warp is seen to be directly proportional to
C. and inversely proportional to m (for u given n).

For some purposes, the wing shape can be more conven-
iently expressed in terms of z/c, and x/c, rather than in
terms of z/c and #/c. This conversion is easily made by
use of tbe following equations:

:=+1–U(H)] :

;=[I–u(l-x)]$F~)

(32)

TABLE II

COMPUTATIONAL FORM

[

.
x=— k=— ~.—

1
C“=o at :=—
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The foregoing equations are embodied in table II, which is
self-explanatory. This form has been used to compute
several examplea, some of which are discussed in the next
section.

NUMERICALXXAMPLES
Example I,—The &t example chosen has the following

characteristics:
n=O.6

k=O.6

A=o

zC.=0 at ~=0.25

This set of characteristics represent a sweptback wing,
tapered to a point at the tips, with the center of pressure a
Iittlo more than 50 percent of the mean aerodynamic chord
ahead of the location for the corresponding flat wing. The
lift ccmfficient, sweepback angle of the leading edge, and
Mach number are not speciiied; the &al amount of warp
is directly proportional to the lift coefficient, and any
combination of sweepback angle and Mach number that
gives n=O.6 may be chosen.

The four constants are found from equations (12) to have
tilmfollowing values:

& ~530
CL “

9=–19.0s19
L

0,
~=15.9021
L

$=0.9071

Several values of u are selected and, for these values, plots
of x’/c against r are made born equation (30). slide-rite
accuracy is sufficient for these calculations, and only a few

10

I
B

\

6 -

X)c

.4

1

.2

0 ,2 .4 .6 .8
r

Lo

FIGUEE7.—Plot of x’/c against r for example 11
,.

.lzi2i2/_ .60

0

‘ - \\\
“ ‘2t \=

-.4 I I 1 I
o .2 :4 ‘4 .6 .8 LO

x’/c
FIGURE 8.—Wing shape for example I m“th ordinates expreesed as

fractions of the local ahord c.

points need be taken to d~e the curves. The resulting
curves for example I are shown in figure 7. These curves
are used to pick values of r from table I. The corresponding
values oi 121,l&, &, and R, from table 1 are entered in table
H., together with the other necessmy data, and the indicated
computations are carried out.

The results of the computations are shown in figure 8, in
which the ordinatea are given as fractions of the local chord
and the origin of the axes is at the leading edge of the local
chord for each value of u. Several features of the wing are
evidant horn this form of presentation: namely, the reflex
curvature of the airfoil sections near the center of the wing
(the angle of attack is i.nfmii%at the center line), the disap-
pearance of this reflm curvature at outboard sections, the
relative twist between inboard and outboard sections, and
the (variable) dihedral. A better picture of the actual wing
is obtied by plotting the results as in figure 9. In order
to give more physical meaning to the picture, the results
have been plotted for a lift coefficient of 0.2 and a leading-
edge sweep of 60° (m= O.577). This laat value thus corre-
sponds to a Mach number of 1.44 since n is equal to 0.6.
There are two points worth mentioning with regard td figure
9. The first is that, within the accuracy of the linearized
theory used in this report, an arbitrary z(u) maybe added
to the vertical ordinates without changing the aerodynamic
characteristics of the wing. As pointed out in reference 1,
this procedure is permissible so long as the resulting wing
does not lie far horn the z=O plane (that is, modification of
the wing shape by addition of a set of ordinates which de-
pends only on u (not on z) maybe practiced in moderation).
The practical significance of this point is that the wing shape
may- be modi.iied by this procedure to simplify the problem
of locating spars. The other point is that for most configura-
tions the inboard stations of the wing, which are those having
the largest warp, are buried within a fuselage and, therefore,
present no structural problems. (The effect of the fuselage
on the ~odynamic characteristics is discussedsubsequently.)
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FIGURE9.—Wing shape for example I with ordinates e.xpwsed as fraotions of the root ohord G. CL=0.2;m= 0.677;~= 1.44.
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This particular example and presumably others not too
mtreme should therefore be quite practical to build.

The pressure distribution for this example is shown in
figure 10. Because of the far-forward specified location of
the center of pressure, part of the wing &rries negative lift.
The spanwise distribution of load is that shown already in

figure 6,
Example II,-The second

following~characteristica:

n=O.8

k=o

X=o

illustrative example has the

0.=0 at :=0.50

—

\

I I I I I
m B 6 .4 .2

\

. ,1

0

-J

:2

-3

The values k=O and A=O characterize a triangular wing.
The center of pressure is at the same point as the center of
pressure of the corresponding flat wing. The purpose of the
present design is to show the kind ofiwarp that might produce
a wing with essentially the same center of pressure and span-
wise load distribution as the flat triangle but without the
steep pressure gradients that are lmown to promote leading-
edge separation on the flat trismgle,at lesst at low Reynolds
numbers. A constmkpressure triangular wing, of course,
has the same center-of-pressure location as a flat triangle and
has no adverse pressure gradients, but the spanwise load
distribution,of such a wing is biangular rather than elliptical.

The method of computation is much the same as that used
in the previous example. The principal difference is that
equations (14), rather than equations (12), may be used to
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Tmurm Il.—Wing shape for example II.
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iind the following values for the four constants:
~=1 ~go7
CL “
c,
c=–0”g082
~=1.0907

$=0.9071
L

The results of computations made with tables I and H are
presented in figure 11. These plots clearly depict a wing
the main part of which is almost flat and which has a turned-
down leading edge, a small tit from root to tip, and almost
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0- . 0.s0

\
\

—

. . ...

1.0-

LB -

.6 -

0-

.4 -

2 -

v
0 .2 .8 1.0

“4 * “6
FUXJEH 12.—l?r@auredistributionforexampleII.

constant dihedralangle along the span. For easeof mmmfac-
ture, this dihedral can be removed without affeoting the
aerodynamic charactaristicavery much. (See the discnmion
of this point under example I.) The pressure distribution is
shown in figure 12; the chordwise gradients of pressure me
not large. The spanwise load distribution is again given by
figure 6.

Example ~,—The third example chosen is a wing with
finite taper, characterized by the following conditions:

n=O.7

k=O.6

?t=o.4

Cn=O at ~=0.25

These values are substituted into equations (18), (2o), and
(26) to obtain the following values:

~0.&2857c,

A= O.05861

B= O.12308

C= O.20986

Substitution of these valuea into equation (24) gives

-$=-0.1814L
Substitution of this value into equation (25) gives

%=4.7438

The remaining constants are obtained by substitution of this
value of CJCLinto equations (22) and (23); thus,

:_ s 2614

$=2.6451
I

From this point the method of calculation is the same aa that
used in the two previous examples: suitable values of r are
chosen, and the form of table II is followed to arrive at values
for the wing ordinate9. - The rcsuking wing shape is shown
in figure 13 together with the pressure distribution; the
results have bean plotted for a lift coefficient ,of 0.4 and a
leading-edge sweep of about 59° (77a=0.6), corresponding to a
Mach number of 1.54. The centemf-presm.re location
shown in the figure for the flat wing ma found from reference
5. The wing shape is not extreme, and the previous remarks
concerning the removril of the dihedral angle apply equally
well to this case so that the wing can be built feasibly. The
pressure plot shows the result of the assumption regarding
the pressurein the tip region.

The following apanwise load distributions are found from
equations (27) and (21b):

For O= u= O.79Fi,

s.
=0.891 –O.602~+0.109ti



DESIGN OF SWDIT8ACE WINGS WARPED FOR SPEC!IJ?ICFLIGHT OHARACWDRISTIOS AT SUPERSONIC SPDEDS 473

For 0,796 S US1,

~=2.82–2.44u-0.49c?+0.112
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FIQUIUJ13.—Wi.ng shape and presure distribution for example IIL
CL=O.4; m=O.6; M=l.54.

Them equations are plotted in figure 14, which also shows an
elliptical load distribution for comparison. The load distri-
bution for the example being discussedis a fair approximation
to the ellipse so that no large drag increase relative to the
flat wing is to be expectid as a result of the specitled forwmd
location of the center of pressure. As a matter of fact, the
spmmdse load distribution of the flat wing is itdf not
elliptical, so that the drag of the warped wing might well be
leasthan that of the flat wing.

NOTES ON PRACTICAL APPLICA~ON

Range of applicability.-’l%e method described in the pre-
ceding sections is directly applicable i% wing phn forms of
the types shown in figure 1. The locations of the various
Mach lines shown in the figure relative to the leading and
trailing edges and relative to Jhe center line are signiihnt.
The leading edge must be subsonic and the trailing edge must
be supersonic; these conditions are expressedby the following
inequality:

‘ 1Zn> lkl (33)

For the case of plan forms with finite tips (X#O), the Mach
line from the leading edge of one tip must not cross over tu

ihe opposite wing panel. This condition is expressed by the
~ollotig inequali~:

(34)

Cn addition, because of the approximate nature of the

2
ism.mption regarding e pressure in the tip region, oawwin

T

/

Aioh the tip . covers a large part of the wing should be
viewed tit tion.

Comp g time.-The exact time required to compute a
give ample depends on such factors as whether x or k or
b we equal to zero and the number of points taken to

e the wing surface. The following time es&nates are
given $s representative of those required by using a manually
~era~d calculating machine. To calculate the constants,
X to 1 hour is required, and to calculate eight spantie sta-
tions, &ith 14 points along the chord at each station, 8 to
12 houks.

Body effect,-ti the derivation of the present method, the
wing has been considered as isolated; whereas, in practice i!
is usually mounted on a body, on whioh may also be mounted
a tail. The available information, both theoretical and
experimental, is not yet snilicient to allow an accurate
quantitative prediction of the effect of the body for the
geneti case. (See refs. 6 and 7 for a discussion of the prob-
l-me qualitative estimates oan be made, and by
referedce, to whatever experimental data may be available
for co&ymations resembling the particular example under
consideration rough quantitative corrections can be applied
for the effect of the body. If the wing is mounted on the
body so that @e chord line at the junctuie is,@ralJelto the
body center line, ‘@en the ‘lift of the combintitionl;tiheri the
wing is at its deai.gnposition ,with respect to the fiiee st:ream
will probably be olose to the sum of the lifts of ,th~ iqplat~~
wing and-the isolated body. If,. however, the. h% ‘@” coii-
nected so that when @e ,wi& is al #s -d@gn position f~h
respect to the free streani the-bodyti ‘at ze~o @e of at~~~~,
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1.0 ..!.~ . -t.-. -.
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lhQmm 14.-Spanwke load distribution for example III compared
with elliptical load distribution.
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then the lift of the combination will probably be somewhat
less than the design lift of the wing. In all cases, the center
of pressure will probably be somewhat more rearwwrd than
that calculated when only the isolated components are con-
sidered. If these foregoing statements, which axe obviously
conjectural in nature, are accepted, then some allowance
can be made for the eflect of the body by adjusting the
design conditions of the wing. The body-interference prob-
lem is neither different nor more serious for the warped wings
considered in this report than for conventional flat wings,
and all the preceding remarks apply equally well (or poorly,
as the reader may judge for himself) to both types of wings.

Off-design operation,-In the course of a flight, the wing
may be required to fly at the dmign Mach number at atti-
tudes other than that for which it was designed. WMin the
limits of the linearized theory used in the analysis, the prin-
ciple of superposition applies. The lift (and pitching
moment) of the wmped wing at an attitude different from
the design condition is therefore simply the design lift and
pitching moment plus (or minus) the lift and pitching
moment of a flat wing of @e same plan form at an angle of
attack equal to the angulm deviation of the warped wing
from its design attitude. When the wing is required to
operate at Mach numbers other than the design value, how-
ever, no simple method is available for estimating the change
@ aerodynamic characteristics, and even to calculate the
properties by the use of the linearized theory is a practicably
impossible job. An ~erimentsl test is the only way to iind
the answer.

Applioabil.ityto other problems.-Allihough the derivation
of the complete method has been limited to wings of the
types shown in figure 1, with approximatcily elliptical span
loads, the basic results presented in equation (4) and table I
are appliksble to other wings as well. For example, a
derivation similar to that presented in this report could be
made for sweptback wings with cross-strewn tips, such as
that shown in figure 9 of re&rence 3. It is also conceivable
that in some cases the shape of the spanvvise-load-distribu-
tion curve might be determined by some condition other
than that of low induced drag. The information presented
in equations (4) and table I could be applied to such cases.

As an example of an application of the basic data of equa-
tions (4) to a problem of a type difFerentfrom that discussed
in the section entitled ‘~umerical IEmrnples”, the design of
a triangular wing with approximately elliptical loading in
both the spanwi.seand the chordwise directions is discussed.
For convenience, this wing is called example IV. (In ref. 8,
Jones has shown that, for a lifting surface of narrow propor-
tions lying near the center of the Mach cone, the minimum
value of the drag due tQlift is achieved when both the span-
wise and -the chordwiae loadings are .ellipticd.) .

The chordwise load distribution is found from integration
of equation-(2) to be given by the foHowing equation:

0’ 1%X3+%(3‘3’)=Mt=$ :+(@Ltic
._. .

If, as in the previous wamples, the conditions if equations
(1.1).=Q applied to equ@@@, mm @ sp~tie !o@ ~
tribution is given by equation (15), d the values of ~/cLj

G/CL, and C~CLare those of equations (14): namely,

$=::

Cl=12 c?
c. r c.

Substitution of these values into equation (35) givea tlm
following equation for the chordwise load distribution:

The chordwise load is now speciiied to be zero at the trniling

edge
()

3=1 . This procedure gives the following valuo for

G/c.: G

and the chordwise load becomes

Local lift
T-t ‘@-:) :-(’-:) (:Y+@-:)(:) ’36)

The load distribution given by equation (36) is compamd
with an ellipse in figure 15. The spanwiae load distribution
is also repeated from figure 6 for the sake of easy comparison,

The wing shape is readily calculated from tables I and II
and is shown in figure 16 for CL=O.2, 34=1.2, and n=O.3.
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—— Elliptical load
I I I I

O1.O .8 .6 .4 .2 0 .2 .4 .6 ,8 10

(a) Chord& load.
(b) Spanwlselo@.

‘FIQWRE16.—Laad distribution for example IV.

The drag coefficient for these conditions has been found b~
graphical integration to be approximately CD= 0.0081
The drag coei%cient of a flat wing at the same conditions i~
0.0091 if full leading edge suction is assumed or 0.0161 if nc
leading-edge suction is assumed (no leading-edge suction h~
been assumed for the warped wing).

.
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l?ImmE 1(3.-~ingshape for example IV. CL=0.2;M=1.2; n= 0.3.

CONCLUDING REMARKS

A method has been presented for designing a sweptbnck
wing to have certain specified flight characteristics at super-
sonic speeds. For example, a wing of given plan form,
operating at a given supersonic Mach number, may be
designed to have a specified lift coefficient, a speciiled center

of pres&re, and a nearly ellipticalspanwise load distribu-

tion. As an aid in the calculationsrequired for any spetic

casej certain basic data and a computational form are pre-

sented as tables. The procedure is illustrated by several
Oxamplea.

LANGLEY AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COWTTEE FOR AERONAUTICS,

LANGLEY l?IELD, VA., ~a~ 11, 1951.
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